
Parallelizing a micromagnetic program for use on
multi-processor shared memory computers

Michael J. Donahue
National Institute of Standards and Technology

Gaithersburg, Maryland 20899–8910
Email: michael.donahue@nist.gov

Abstract—Parallelization of a finite difference micromagnetic
program on shared memory computer systems is studied. Effi-
ciency is found to be limited by memory bandwidth, and tech-
niques are introduced to reduce memory traffic. Computations
are sped up by a factor of three with four processor cores; a
factor of five is possible on some systems. This corresponds to a
Karp-Flatt serial fraction of 5-10% for small core counts.

I. INTRODUCTION

Micromagnetic simulations are time consuming, mostly due
to the expense of the long-range self-magnetostatic (demag-
netization) calculation. Many efforts have been made to speed
up these computations by parallelizing the code. Most of this
work has been done on finite element codes [1]–[3], which,
because of the techniques used to compute the demagneti-
zation field, are both more amenable to and more in need
of parallelization, but finite difference codes have also been
parallelized [4], [5]. Historically most of these examples have
been aimed at computer clusters rather than shared memory
machines.

In recent years multi-core and multi-processor computers
have become ubiquitous, so it is natural to examine the pos-
sibility of parallelizing micromagnetic codes for such shared
memory architectures. Although memory bandwidth and la-
tency in shared memory systems is faster than the node-to-
node communication in computer clusters, nonetheless mem-
ory speed has not kept pace with the increase in the number
of processing units. In many scientific codes performance
is restrained more by main memory access speed than core
arithmetic limitations. When parallelizing such codes, it is
important to reduce memory accesses as much as possible.
This paper details the implementation of a parallel version of
the widely used OOMMF [6] finite difference micromagnetic
program, with emphasis on reducing memory traffic.

II. COMPUTATION DETAILS

The computations in micromagnetic programs divide natu-
rally into two parts. One part computes the magnetic energy
(and associated field) for a given magnetization state, and the
second uses the results of the first to advance the magnetization
from one state to the next. The latter (state-to-state transition
computation) may implement either a dynamic simulation
by integrating the Landau-Lifshitz-Gilbert equation, or else
a quasi-static simulation by tracking magnetic equilibria via
energy minimization. Either way, the computation time is

dominated by the first part (energy and field computation),
which is itself dominated by the time required to compute the
self-magnetostatic field. See Table I for some representative
times.

A. Computation of Local Energy Terms

The canonical energy terms in a micromagnetic calculation
are exchange, magneto-crystalline anisotropy, Zeeman, and
demagnetization (self-magnetostatic). The first three are local
(or nearly local) in nature, and allow for a straightforward
parallelization. The micromagnetic spin array is partitioned
into separate blocks, and the local (non-demagnetization)
energy terms are computed independently in each block, with
one thread of execution per block. If the blocks are chosen
small enough that the magnetization data for each block will
fit into processor cache, then that data will be loaded only
once for all the local energy terms.

B. Computation of Demagnetizing Energy

The non-local nature of the demagnetizing field makes par-
allelizing this term difficult, because a simple spatial decom-
position of the spin array leads to expensive communication
overhead between the partitions. The OOMMF micromagnetic
program computes the demagnetization field using fast Fourier
transforms (FFT’s) [7], which is possible because the self-
magnetostatic field can be naturally expressed as a convolution
of the magnetization spin array with a fixed kernel (the interac-
tion matrix) derived from the geometry of the simulation vol-
ume. The computation involves applying a three-dimensional
FFT to the spin array, multiplying the transformed spin array
by the transform of the interaction matrix, and applying an
inverse three-dimensional FFT. The three-dimensional FFT is
decomposed into iterated one-dimensional FFT’s along each
of the x-, y-, and z-directions. In the first stage, for each y and
z an FFT is performed along x. Each FFT is performed on
one core; in other words, the FFT’s are partitioned by (y, z)-
coordinate. In the second stage, the spin array is partitioned
by (x, z) and FFT’s are taken along y. This partitioning is
effectively in x-transform space. The partitioning for the third
stage is by (x, y), in xy-transform space, and the FFT’s are
taken along z. The multiplication of the spin array transform
by the interaction matrix transform is partitioned across the
full transform space. The process is then reversed to take the
inverse FFT.

One performance issue arises from the naturally periodic
nature of the FFT. To use an FFT to compute the convolution
of non-periodic sequences, it is necessary to zero-pad a finite
sequence to twice its length. For multi-dimensional convolu-
tions, zero-padding is required in each dimension. Thus, for
three-dimensional FFT’s this increases the problem size by
a factor of eight. If the original dimensional lengths of the
input array are Nx, Ny , and Nz , and we assume that the
computational cost of a one-dimensional FFT of size n is
Cn log n (where C is a small constant), then the computational
cost for a three-dimensional FFT of a fully zero-padded
2Nx × 2Ny × 2Nz array is 8CNxNyNz log 8NxNyNz . This
is over eight times larger than the cost if zero-padding were
not required.

The FFT of an entirely zero sequence is zero; this fact
can be used to greatly reduce the cost of computing a multi-
dimensional FFT of a zero padded array. For ease of discus-
sion, consider first the two-dimensional schematic in Fig. 1. In
a naive computation, the first stage (x-axis FFT’s) consists of
2Ny FFT’s of length 2Nx, for a cost of 4CNxNy log 2Nx. The
second stage (y-axis FFT’s) would consist of 2Nx FFT’s of
length 2Ny , for a cost of 4CNxNy log 2Ny . So the total cost
would be 4CNxNy log 4NxNy . However, it is not necessary
to compute the x-axis FFT’s in the upper light gray rectangle
of Fig. 1, since it is known a priori that the FFT’s there will be
zero. This reduces the cost of the first stage of the computation
by half. If x and y are ordered so that Nx ≥ Ny , then the total
computational cost is reduced by at least 25%. Extending this
method to three dimensions yields even larger savings. In that
case the reduced cost is

2CNxNyNz log 2Nx + 4CNxNyNz log 2Ny

+ 8CNxNyNz log 2Nz.

If the axes are ordered such that Nx ≥ Ny ≥ Nz , then the
savings is a minimum of 41.6%, which occurs when Nx =
Ny = Nz . The savings can be significantly larger for flat plate
or long needle geometries. For the 500 x 250 x 8 geometry
used in the tests below, the savings is about 52%.

Of course, not only is there no need to compute an FFT
of a known zero sequence, there is also no need to read it
from or write it to memory. The savings in memory traffic is
comparable to the computational savings, and is of primary
importance for efficient parallelization. Moreover, if Nz is
small enough that the z-axis FFT’s fit into processor cache,
then the memory loads and stores surrounding the multipli-
cation of the spin array and interaction matrix transforms can
be eliminated. Instead of computing the forward z-axis FFT’s,
multiplication of transforms, and inverse z-axis FFT’s as three
separate stages, each individual z-axis FFT can be immediately
followed by the multiplication of transforms for that line, and
then the inverse z-axis FFT can be performed. If this “inner”
portion of the demagnetization computation fits into cache,
then a significant savings in memory traffic is achieved. Part
of the savings is because the working memory set size for
the spin array transform drops from 8NxNyNz to 4NxNyNz .
(The “upper-z half” of the spin array transform is only held

 0

 0

 Nx

 2Nx

Ny

2Ny

Fig. 1. Schematic illustrating efficient FFT computation with large scale zero-
padding. In the x-axis FFT’s, the black and dark gray regions are computed,
whereas the light gray region may be ignored. For the subsequent y-axis FFT
pass, the entire rectangle must be processed.

temporarily in cache, and is not stored in main memory.)
The results presented in this paper were obtained using

an FFT algorithm coded specifically for this application.
However, the techniques presented above for reducing memory
traffic can be applied using any one dimensional FFT algo-
rithm, such as one from a system or vendor library.

III. COMPUTATION RESULTS

To test the effects of the above techniques, a 2000 nm
× 1000 nm × 32 nm magnetic slab was simulated, with
4 nm cubic cells. This system consists of one million spins,
which appears to be a reasonable benchmark size. As noted
by Gustafson [8], parallel efficiency generally improves with
increasing problem size, but that effect is not studied in this
work. The energy terms included exchange, cubic anisotropy,
Zeeman, and demagnetization. Two hardware configurations
were tested: a 3 GHz two-way quad-core Intel Xeon X5365
machine (8 cores total) running Mac OS X 10.5.6, and a
2.6 GHz eight-way dual-core AMD Opteron 885 machine
(16 cores total) running Linux x86 64 2.6.27. The Xeon
machine has a single memory bus shared by all cores; the
Opteron has separate memory for each processor, and high-
speed interconnects between the processors. The somewhat
higher total memory bandwidth of the latter system is evident
in the results (Table I), which show the Opteron host, with
slower processors, running slightly faster than the Xeon host
when eight cores runs are compared.

Table I shows the component and total computational time
per field evaluation (equivalently, time per state-to-state tran-
sition) as a function of the number of processor cores. The
“Non-demag” column is the time for all the local energy
terms. The “Demag-inner” piece, described in the previous
section, is a component of the “Demag Total” time. The
“Step Total” column includes all the energy computation
times and the overhead time for a conjugate gradient energy
minimization solver. Normalized speed-up curves for these
data are presented in Figs. 2 and 3. The dashed lines in these

TABLE I
TOTAL AND COMPONENT ELAPSED (WALL) TIME IN SECONDS PER FIELD
EVALUATION FOR A ONE MILLION CELL MICROMAGNETIC SIMULATION.

Intel Xeon X5365, 3 GHz

Cores Non-demag Demag-inner Demag Total Step Total

1 0.096 0.199 0.591 0.826
2 0.051 0.109 0.318 0.453
3 0.036 0.078 0.230 0.334
4 0.029 0.062 0.188 0.277
5 0.028 0.052 0.176 0.261
6 0.026 0.048 0.172 0.253
7 0.025 0.045 0.172 0.252
8 0.023 0.044 0.171 0.248

AMD Opteron 885, 2.6 GHz

Cores Non-demag Demag-inner Demag Total Step Total

1 0.135 0.300 0.852 1.154
2 0.069 0.157 0.439 0.616
3 0.048 0.109 0.310 0.441
4 0.037 0.086 0.249 0.360
5 0.033 0.068 0.211 0.317
6 0.027 0.059 0.175 0.272
7 0.025 0.054 0.166 0.261
8 0.023 0.051 0.149 0.239
9 0.024 0.047 0.145 0.239

10 0.023 0.043 0.137 0.228
11 0.023 0.040 0.133 0.225
12 0.023 0.040 0.126 0.217
13 0.023 0.037 0.125 0.217
14 0.023 0.038 0.124 0.217
15 0.023 0.038 0.127 0.221
16 0.023 0.039 0.125 0.218

figures represent rough fits to Amdahl’s law [9], which states
that an algorithm with proportion P that can be parallelized,
and proportion (1 − P) that can’t, will show a speed im-
provement on n processors of 1/((1−P)+P/n). The quoted
serial fraction is essentially the Karp-Flatt metric [10], which
corresponds to 1− P in Amdahl’s law.

In both cases, we see that the “Demag inner” portion of
the computation, which in the single core case accounts for
approximately one fourth of the total processing time, scales
well—through all eight cores on the Xeon host and up through
twelve cores on the Opteron machine. The other components
don’t scale quite as well, but still there is a total factor of
three speed-up with four cores on the Intel Xeon host, and a
factor of five speed-up with ten cores on the AMD Opteron
host. In these tests the non-energy computation portion of the
state-to-state transition has not been parallelized. In the single
core case it represents a relatively small fraction of the total
compute time, but the importance of this term grows as more
cores are added. In principle, the parallelization approach used
for the non-demagnetization energy terms should be applicable
to this component as well.

1

2

3

4

5

 1 2 3 4 5 6 7 8

N
o

rm
a
li

z
e
d

 s
p
e
e
d

-u
p

Processor cores

1/(0.05+0.95/n)
1/(0.10+0.80/n)
Demag interior

Demag total
Energy non-demag
Total computation

Demag total
Total computation

Non-demag energies

Dem
ag in

ner

Fig. 2. Relative speed-up on Xeon host for component terms demag inner
(open squares), total demag (closed squares), local energies (open triangles),
and step total (closed circles). Dashed lines are rough fits to Amdahl’s law; the
upper curve has 9% serial fraction, the lower curve has 12% serial fraction.

1

2

3

4

5

6

7

8

9

 2 4 6 8 10 12 14 16

N
o

rm
a
li

z
e
d

 s
p

e
e
d

-u
p

Processor cores

1/(0.05+0.95/n)
1/(0.10+0.90/n)
Demag interior

Demag total
Energy non-demag
Total computation

Dem
ag

 to
tal

Total computation

Non-demag energies

Demag inner

Fig. 3. Relative speed-up on Opteron host for component terms demag inner
(open squares), total demag (closed squares), local energies (open triangles),
and step total (closed circles). Dashed lines are rough fits to Amdahl’s law; the
upper curve has 5% serial fraction, the lower curve has 10% serial fraction.

DISCLAIMER

The mention of specific products, trademarks, or brand
names is for purposes of identification only. Such mention
is not to be interpreted in any way as an endorsement or certi-
fication of such products or brands by the National Institute of
Standards and Technology. All trademarks mentioned herein
belong to their respective owners.

REFERENCES

[1] B. Yang and D. Fredkin, “Dynamical micromagnetics by the finite
element method,” IEEE Trans. Magn., vol. 34, pp. 3842–3852, 1998.

[2] W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster,
and V. Tsiantos, “Scalable parallel micromagnetic solvers for magnetic
nanostructures,” Comp. Mat. Sci., vol. 28, pp. 366–383, 2003.

[3] K. Takano, E.-A. Salhi, M. Sakai, and M. Dovek, “Write head analysis
by using a parallel micromagnetic FEM,” IEEE Trans. Magn., vol. 41,
pp. 2911–2913, 2005.

[4] R. C. Giles, P. R. Kotiuga, and M. Mansuripur, “Parallel micromagnetic
simulations using Fourier methods on a regular hexagonal lattice,” IEEE
Trans. Magn., vol. 27, pp. 3815–3818, 1991.

[5] Y. Kanai, M. Saiki, K. Hirasawa, T. Tsukamomo, and K. Yoshida,
“Landau-Lifshitz-Gilbert micromagnetic analysis of single-pole-type
write head for perpendicular magnetic recording using full-FFT program
on a PC cluster system,” IEEE Trans. Magn., vol. 44, pp. 1602–1605,
2008.

[6] M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0,
Interagency Report NISTIR 6376, National Institute of Standards and
Technology, Gaithersburg, MD (Sept 1999).

[7] T. G. Stockham, “High speed convolution and correlation,” Joint Com-
puter Conference Proceedings, vol. 28, pp. 229–233, 1966.

[8] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the
ACM, vol. 31, pp. 532-533, 1988.

[9] G. M. Amdahl, “Validity of the single-processor approach to achieving
large-scale computing capabilities,” in Proc. Am. Federation of Infor-
mation Processing Societies Conf., vol. 30, AFIPS Press, Reston, Va.,
1967, pp. 483–485.

[10] A. H. Karp and H. P. Flatt, “Measuring Parallel Processor Performance,”
Communication of the ACM, vol. 33, pp. 539–543, 1990.

